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Multiple-point and multiple-time correlation functions in a hard-sphere fluid
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A recent mode-coupling theory of higher-order correlation functions is tested on a simple hard-sphere fluid
system at intermediate densities. Multiple-point and multiple-time correlation functions of the densities of
conserved variables are calculated in the hydrodynamic limit and compared to results obtained from event-
based molecular dynamics simulations. It is demonstrated that the mode-coupling theory results are in excellent
agreement with the simulation results provided that dissipative couplings are included in the vertices appearing
in the theory. In contrast, simplified mode-coupling theories in which the densities obey Gaussian statistics
neglect important contributions to both the multiple point and multiple-time correlation functions on all time
scales.
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[. INTRODUCTION tical behavior of the slow modes is avoided. It was suggested
that simple mode-coupling theori¢$8,19 based upon this
Over the last few years, the emergence of multidimenGaussian assumption lead to a relatively poor description of
sional nuclear magnetic resonar(B8MR) [1,2] and nonreso- the long-time behavior of higher-order correlation functions.
nant nonlinear Ramap3-5] techniques has generated re- The purpose of this article is to validate the mode-
newed interest in the information content of higher-ordercoupling theory expressions for multiple-point and multiple-
correlation functions involving time correlations of dynami- time correlation functions by examining the simplest non-
cal quantities at multiple points and time separations. Thestivial system, the hard-sphere liquid. The hard-sphere liquid
experimental developments hold great promise for the eluciis a very useful system to examine theoretically since the
dation of the nature of the underlying dynamics giving rise tosimple form of the interaction potential allows static correla-
complex relaxation behavior in supercooled liquids, poly-tion functions to be related to the radial distribution function
meric systems, and proteip§—8|. Concurrently, simulation at contact. In turn, the radial distribution function can be
studies probing the microscopic origin of dynamical hetero-approximated using an accurate equation of state, such as
geneity in dense system8] have made use of the increased that of Carnahan and Starlifig0], which relates the pressure
information content available in multiple-poirtl0] and to the density and the temperature. In addition, excellent pre-
multiple-time[11] correlation functions. dictions exist for dynamical properties of hard-sphere sys-
Although there has been some recent work attempting ttems based on detailed kinetic thed81]. Another advan-
reproduce simulation results for the off-resonant fifth-ordertage of looking at hard-sphere systems is that the dynamics
Raman response functigd2—14, there has been little the- of the system can be simulated very efficiently using event-
oretical work to establish a microscopic theory for generabased molecular dynamics methof22] since particles
higher-order correlation functions. In a previous artidg],  evolve freely between collisions, thereby allowing good sta-
a general mode-coupling theory was developed in which théistics to be obtained from simulations.
long-time behavior for multiple-point and multiple-time cor- ~ We shall focus on systems of moderate reduced densities
relation functions was expressed in terms of ordinary two{p* =0.25) in which “mode-coupling” effects leading to
time, two-point correlation functions of a set of slow vari- nonexponential relaxation of correlation functions of linear
ables, which are coupled by vertices containing both staticlensities, such as the dynamical structure factor, can be ne-
(called Euley and dynamic(called dissipativecorrelations.  glected. In particular, we target correlation functions of long-
The theory is based upon the assumption that the long-tim&avelength fluctuations, which decay on long time scales
dynamics of arbitrary variables is a functional of a set ofand exhibit complicated higher-order correlation functions.
slow modes of the system. The long-time dynamics of This paper is organized as follows. In Sec. Il, the mode-
higher-order correlation functions is then described by isolatcoupling formalism developed in RefL5] is reviewed and
ing the component of the relevant variables along multilineaadapted to the hard-sphere system. Explicit expressions are
products of the slow variables, resulting in expressions fopresented for three-point and three-time correlation functions
the higher-order correlation functions in terms of the sum ofinvolving linear densities of numbeior masg, transverse,
an infinite number of multiple-point correlation functions of and longitudinal velocities. In Sec. Ill, simulation methods
slow modes. The formulation is made tractable by a cumuparticularly suited for calculating higher-order correlation
lant expansion methottalled N ordering[16,17]) in which  functions in a hard-sphere system are discussed. In Sec. 1V,
multiple-point correlation functions are factored into convo-the predictions of the mode-coupling theory are compared to
lutions over the familiar two-point, two-time correlation the simulation results for relatively simple three-point and
functions of the slow modes. In this way, the need to sim-three-time correlation functions, and it is demonstrated that
plify the mode-coupling expressions for higher-order corre-dissipative parts of vertices provide additional important
lation functions based on an assumption of Gaussian statisouplings to those at Euler order. The results are contrasted
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with those obtained within the framework of the GaUSSIanof the SystemPk is thex component of the Vect@k, andk
mode-coupling theoryf18,19. Finally, conclusions of the s taken along thex axis. Note that thd;, and T, are the

study are given in Sec. V. transverse modes of the momentum density, whjlds the
longitudinal momentum density. With this definition of the
[l. THEORETICAL FORMULATION basis set, the matrix

The system under consideration is composed Nof
particles of massm and diametera in a volume V
=LyXLyXL,. The particles interact through the two-body
hard sphere potential

<AEAE* > = <A§AE k> Oab

is diagonal in the hydrodynamic labedsandb, where(---)
denotes the grand-canonical ensemble average. The nonlin-
0 if r<a, ear dependence of the dynamical variables is expressed in

V(r)= (1) terms of a “multilinear” basis set,

o jf r=a.
Given the form of the potential, the dynamics generated by Qo=1,
the Hamiltonian conserves the total number of partidles
the total angular momentum, the linear momeRtand the Qi1=A— (A=A,

energy E of the system. In Ref[15], expressions for the

long-time behavior of correlation functions were obtained _ _ _ *\ e —1.

under the assumption that the slowly varying part of an ar- Q2=Qx—qQq—(Qk-¢Qq) —(Qx-¢QqQ1) K11 Q1. (3)
bitrary dynamical variable is an analytic function of a set of

slow variablesA of the system. An essential part of success-

fully applying the formalism to a particular system is the

identification of acompleteset of slow variables. To identify Where the “” notation denotes a sum over components of
the slow modes of the system, it is helpful to consider thethe column vecto”, (the indices of the hydrodynamic vari-

local densities of the conserved variablsP, andE, ablesNy, Ly, Ty, To, andHy). The subtractions in the
basis set defined in Eq3) are included to ensure that the

N multilinear matrix,
N(r)=i2l S(r—r)
Kim=(QiQm) =(QIQm) i m" (4)

P(r)= 2 pio(r—r), is diagonal inmode order | The slow part of any dynamical
i=1 variableC is removed by the projection operator

2

1 0
BN 2 m 2 VT Jor=r. Pe=3 (COHK; Q) ©
=0

wherer; and p; are the spatial position and momentum of

particlei. Noting that the Fourier transforms of these densi-and the complementary projection operat® =1—7

projects onto the orthogonal subspace.

ties, Writing  the  three-point  correlation  function
=§ e (Ak—q(t)Aq(t)A_y) in terms of the basis set, we obtain
i=1
(A g(DAGDA_)=(A(DA_) K (A A_Ag)
N
:2 pieik'ri' G qqk(t) Ki1, (6)
N . whereG™"(t) =(Qum(t) Q¥ )*K, L, and, in particular,
Z 22 V(ri—rh [e*n @) A
- (Qa(k—a,q; A )
. . . ) k a.q; k()= PN . (7)
are slowly varying quantities for smak=|k| since their (AA_)

time derivatives are proportional tk the minimal set of

slow variablesA, must include all the “hydrodynamic” vari- Note that Eq(6) is exact in the limit—0 by construction of
ables{N P, ,Ey} with k smaller than some cutoff wave vec- the basis set. Utilizing projection operator techniques
tor k.. For our purposes, it is convenient to work with a[17,23,24 and cumulant expansion method46], the
shghtly different basis sef,, composed of the variables multiple-point correlation funct|0rG aqk(t) can be ex-
Ny, Le=Px, Tu=P,, Tx=P;, and H=(3Ny pressed in terms of two-point, two- tlme correlatlon functions
—2BE,)/\/6, where=1/(kgT) is the inverse temperature as[15]
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o t linear correlation function&(t). For simplicity, we con-
Gk qq(V= fOkaq(t_ 7) sider correlation functions involving the transverse momen-
tum mode T,, henceforth abbreviated as ju3i. From
xG(lll(t_T):Mﬁl_qq_k,eil(ﬂdﬂ (8) symmgtry considerqtions it i's egsy to establish that the
o linear-linear correlation functiorG,%(t)=0 unlessa=T,

where G&l(t)=<Ak(t)A_k)/<AkA_k> are the normalized, which s?mplifies the subsequent analysis. . .
two-point and two-time correlation functions of the linear ~L0Oking  first —at the  correlation  function,

densities, and the “vertices” are given by (Tk_q(t)Tq(t)N_k), using Eq.(6) we have
N lm . * ” * - ” N Aa, n
M!m = <QIQm>_JO d7'<¢|(7-)¢m>}Kmr1n! 9 <Tk,q(t)Tq(t)|\|,k>=—< ;(:;a o (AT qTo)
KAk

with the fluctuating forcep,(t) defined by ) ..
FG N ONNLY, (14

. a.9:k
H(H)=e" P 1-P)Qy, (10 ) )

where the repeated indexis summed over the labels o,

where L is the Liouville operator. T, L, andH, and
Similarly, it can be shown that the three-time correlation
function GITN (1) (Q3"(k—0,a,)N_y)
_ k—q,q:k(L= - - :
GM™(ty,t) =(Qu(ty +12)Qy(t)QF ) - Kif' (11) A (NN _)

can be approximately written 4$5] The replacement of the “21” superscript -, . (t) by

“TT; N” above is meant to denote the specific hydrodynamic
labels under consideration. The semicolon separating the la-
bels indicates that the label§ T" correspond to the bilinear
density, whereas theN" labels the linear density in Eq7).
+GH(ty)* M2 G2(t,) + O(N™Y), Noting that(A%  T,_,T,) vanishes unlesa=N,H, the first

part of Eq.(14) can be written as

GM(t,,t) =G (ty)* M1 GHY(1y)

+GM(t) M GH(ty)

(12)

whereM'™" is given by (NK(HN_y) . (N((DH )

B S(k) <N—ka—qTq>+ <N> <H—ka—qTq>

M'™=(QQmQp) - Kpn- (13

om . - 2m . -

Furthermore, it was shown in Rdf15] that G4t,) can be - E<Nk(t)N—k>_ \/—Tﬁ<Nk(t)H—k>'
written in terms of the two-point, two-time functions and the
M?2! vertices in a manner analogous to E§). whereS(k) = (N,N_,) is the static structure factor. The nor-

The symmetry properties of the Hamiltonian can be usegyalized multiple-point correlation functio®I "N () of

to greatly simplify the analysis of higher-order correlation yq pasis set variabl®]" can be evaluated uks_ir?g;ll(itﬁ)
functions. For example, since the Hamiltonians invariant 2 '

under the transformatiorv="H, where the self-adjoint

t
time-reversal operatof acts on an arbitrary phase point Gl = f Grly(t—=7Gg (t—7)
(rN,p™y by 7(rN,pMy=(rN,—p"N), all time correlation func- 0
tions considered here have well-defined symmetry properties —rT
ymmetry prop MiT2 . GEN()d T, (15

under7, namely,7A%= y,A2, wherey,=1 fora=N,H and
va=—1 fora=T,,T,,L. Furthermore, since the Liouville \yherea is summed over the labels andH only since the
operator £ traansforlr)ns asIL= _a['T‘ I 5 easy 10 Show  G7Ta \ertex vanishes whea=L or T. The explicit form of
[15,29 that(ADAZ ) = vays(Al —DAZ). Itis strayght-_ the vertex is given by Eq9), which involves a “Euler part”
forward to extend these arguments to multiple-time
correlation functions for which(Aﬁ_q(tletz)Ag(tl)AEk> TT aa
= Ya Vo ¥e(AR(— 11 _tz)Ag(_tl)Ac—k>- M
(ARAZ)
A. Three-point correlations
We now turn our attention to evaluating the expression&nd @ dissipative part

for three-point correlation functions of three linear densities .

of the form in Eq.(6) for several d|ﬁer§nt comb|nat|on§ of _J dr( ¢Eq,q(7) 2 VI(AZAZ ).
wave-vector and hydrodynamic labels in terms of the linear- 0

011107-3



RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW EB5 011107

These contributions to the vertex can be evaluated as detailéd Egs.(20) and(21), to leading order in the wave vectors,
in the Appendix, and one finds that to leading order in thethe vertexM ™57 for a=L contributes at Euler order and is

wave vector, only the=L term contributes at ordés (with
corrections of ordek®), whereas the other vertex with
=H gives a contribution proportional tk?. Putting all this
together, we obtain the expression

A m
<kaq(t)Tq(t)ka>=E< N_y)— J_B<N K(DH )
+ Gyl (D(NGN L), (16)
where
G gD = fe (t=1G (t— M TGN () d 7

t
+ fOGIIq(t— 7)Gg ' (t—7)

XM GEN(nd T

7

and the functionsG; '(7), G;"(7), andG;!"(7) are given

explicitly by
G (1) =(Ti(n)T_ )/M(N)kgT,

G =(Ly(1)N_)/S(K),
GIN(T) = (H ()N _)/S(K).

QWTTL MTTH

The vertice a.

gk and q:k are given in the Ap-

pendix. Note that |f the d|55|pat|ve parts of the vertices are

neglected, only the first time-convolution integral in E4j7)
contributes to(T q(t)Tq(t)N K-

imaginary, while the vertices! ™ T andM ™ T contribute at
dissipative order and are real. However, sir(eh:L(t—r),
GyN(t—=7), GgN(t—7), and Gy"(t—7) are real and
GN(t—17), Gy (t—7), and Gg"(t—7) are purely imagi-
nary by time-reversal symmetry, the correlation functions
Grlidq(t) andGMT (1) are real whereaG "y () is
purely imaginary. Note that at=0, the expressions for the
functions G2! in Egs. (17), (21), and (20) vanish and the
multiple-point correlation functions are given exactly.

B. Three-time correlations

The three-time correlation functions

(Tuoq(tr T ) Lg(t) Ty

GTLI‘ qk(ty,t)=

(N)mkgT '
GTNT t )= <Tk q t +t2)N k>
qu,q,k( 1,42 <N>kaT

can be evaluated in a straightforward fashion using the re-
sults of the preceding section. In REE5], it was shown that
the multiple-time vertice$!'™" reduce to very simple forms

to leading N order, with corrections of ordeM/N~k.a
~10 ° for systems of moderate density7]. Using the re-
duced forms ofM?!! and M*'?2 and Eq.(12), the leading
N-order expressions for these multiple-time functions are

Gkt t)= GE TqL-k,q<t2><L L_gGy (ty)

From similar considerations, it is not difficult to obtain and

expressions for other correlation functions. For example, we

find that the multiple-point function&T _ 4(t)L4(t) T_y) and
(T q(NG(t) T_y) are given by

<Tk q(t)l—q( k> GTLK-]rq k(t)’ (18)
S(a) .
(T o OROT ) = 75 (TeOT -0+ G150
(19
with
TL;T t TT La
Gk qqk( ) J‘OGk_q(t_T)aL’N'H Gq (t_T)
XM%T (G ()dr (20)
and
TN; T t TT Na
G- qqk( )= fOGk_q(t_T)aL,N,H Gq (t—=7)
XMZT  Gr (7)dr. (21)

q(tz)GTLqTq k(t1) (22
S(a)
OI™ qu(ta.t2) =61 ft2) e G (1)
+ G g, o(t2) S(A) G (1)
Gyl o(t2) G g gl o). (23

Using the symmetry properties &'™(t) [15], one can write
GTTa(t)(A2A ) =[GTaT(~1)]*; and Egs.(22) and (23
can be expressed in terms 6fY(t) alone as

k qqk(tl! 2) k;-(rq'qfk(t )GIT(II)

Gl 4(t2)Grlg gt (24)
and
S(a)
GIMT ity t) =GIT (1) <Nq> Gl(ty)
Gquq k( Z)G-IET(tl)
+GyL (tz)G qqk(tl) (25)
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where the time-reversal symmetry properties and the behawame direction is recalculated. Similarly, after a collision
ior under complex conjugation of th&2Yt) correlation event between two particles, new collisions within the same
functions has been used. cell, as well as the new cell-crossing times must be calcu-
In Sec. IV, these expressions will be compared to resultéated for the particles involved in the event.
from simulations of a hard-sphere system at moderate den- Even though the calculations after a crossing or a colli-
sity. sion event are 00(1) when many cells are used, it is still
necessary to search the event list of each sphere to find the
Il. SIMULATION METHOD earliest event in the simulation. If the spheres are simply
) . _ stored in a linear array, this implies a look-up time that scales
The dyn_amlcs _of hard spheres consist of .free, .rectlllneaﬁnea”y with N, and the algorithm scales & as before,
motion until the distance between two sphefieand]) be-  though with a considerably lower prefactor than without the
comes equal to their diametey at which point an instanta- ¢ej| structure. If, on the other hand, the spheres are stored in
neous collision takes place, leading to the momentumy pinary tree, ordered according to their first event, the search
changes for the first event scales as the logarithm of the number of
pi—pi— 5L (pi—p:)- ] elements, which in our implementation I Deleting an
o o ' element from the tree is aB(1) operation, while the inser-
pj—p;+ol(pi—py)- &1, tior_n of new elements_ into the tree requires a tree search,
which scales as IN. Since the number of crossing and col-
where the collision normak equa|s (l — ri)/a at contact. lision events is extensive, the algorithm scaleddis N, and
Due to the simplicity of the equations of motion, the dy- the overall speed up of the algorithm over a simple event-
namical evolution of the hard-sphere system can be compPased simulation behaves & InN. It should be noted,
puted exactly using an event-driven procedure in which on&owever, that the cell structure reduces the number of colli-
calculates the first possible collision of all spheres under théions to be considered to a large extent, so the prefactor is
assumption that no other particles collide. The phase point oS0 quite reduced.
the system is then evolved up to the time of the earliest of There is some flexibility in selecting the size of the cells
these collisions, and the process is repeated until the tot4® be used in the simulation. Larger cells require fewer cross-
desired run time is completed. ing times to be calculated at the expense of increasing the
Without additional bookkeeping, the number of Sphereg"lumber of collisions, which must be computed within each
with which a specific particle can collide l— 1, and hence Cell. As Rapaport has notd@6], the optimal choice of the
O(N) calculations of collision times are required for eachdimensions of the cell for systems of low density is interme-
particle after it collides. As the number of collisions per unit diate between the size of the full system and the diameter of
time is extensive, the simulation time scale increases qudhe hard spheres, whereas the smallest possible cells make
dratically with the number of particles. Considerable im- for the fastest simulation for higher densities. In the simula-
provements in simulation efficiency can be gained using dions reported in the following section, the optimal length of
division of the system into region&alled cell3 and data Cells was found to correspond roughly with the diameter of
structures to optimize the search for the next collision timethe hard-sphere particles.

[26].
~To use the cell structure in a S|mula}t|on, the system of IV. RESULTS AND DISCUSSION
dimensionL, XL, XL, is divided into an integer number of
cells of dimensiorl, x1,x1,, where each of the lengthg, In this section, the mode-coupling expressions for the

l,, andl, is no smaller than the diameter of the hard sphereshigher-order correlations functions given in Sec. Il are com-
Now, in addition to the collision events between spheres, thgared to those obtained from event-based molecular dynam-
cell in which each sphere is located and the time at which thécs simulations in the microcanonical ensemble at an inverse
particle will leave its cell is recorded. This is advantageougemperature3=3. The size of the periodic system in the
because the number of spheres that can collide with a givesimulation was chosen to hg=L,=L,=15.7526, such that
sphere before a particle moves out of its cell is proportionafor N=1382 hard-sphere particles of diameger 1, the re-

to the number of spheres in its vicinity, i.e., the spheres in theluced densityp* =0.25 (p/p., Wherep, is the density at
same cell or in one of the 26 neighboring cells. Using the celtlose packingand the magnitude of the smallest wave vec-
structures, the number of spheres within the vicinity of ator kpa=2ma/L,=0.398867 coincide with one of the cases
given particle is of ordeO(I,l,I,N/L,L,L,)=0(1), pro- in Ref.[27]. A total number of 18=3375 cells were used,
vided the lengths of each cell are of the order of the diameteleading to a collision ratgincluding data collection of

of the particles, and hence far fewer collision times of pairsroughly 3.2< 10° h™* on a 600-MHz digital 21164 processor.
of particles must be computed after each collision eventThe event-dynamics simulations were run on nine nodes of a
However, the use of cells comes at the cost of increasing th80-node “Beowulf” cluster for a total of 4100 CPU hours,
complexity of the event-driven simulation since after a crosswhere each node carried out 3750 short molecular dynamics
ing event for a given particle, the collision times of the giventrajectories of approximately 403500 collisions. The initial
sphere with spheres that previously were not in its vicinityconfiguration of the system for each of the individual runs
must be considered, and, if necessary, the first stored colliwas randomly chosen using a simple rejection method. In all
sion event adjusted. In addition, the next crossing time in theesults reported below, time is expressed in dimensionless

011107-5



RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW B5 011107

units t/t., wheret; is the mean collision time calculated the imaginary part calculated from the simulation gives a
from the simulation. At the density and temperature of therough estimate of the error in the real part, as both are cal-
simulation, the mean collision time is roughly half the time culated from the same configurations and involve terms of
t, it takes a particle to move over a distance equal to itsimilar structure. To approximate the statistical uncertainty
diameter a (. /t,,~0.412). for a real correlation function, a histogram of the values of

To evaluate time correlation functions in the simulation,the imaginary part is constructed to determine the interval of

the values of the linear densitiég(t) were calculated for a values containing 96% of the points. The size of this interval
set of wave vectors a1 +1 fixed time intervals = 0. At provides an estimate of the error in the real part, taken to be

oAt andstored in an arrayA[k][i], where the index constant for all times of the correlation function. Such an

runs' .(.);/er the wave-vector indices ainﬁms from O toM. In approximation seems reasonable given that the variations in

all molecular dynamics runs, the time intendat/t :O' 15 the imaginary part in the simulations are observed to be rela-
L m .

dM =400 T int. two-ti lation functions f tively constant over the total time intervall At. For an
andi= - Wo-point, two-time correlation functions for a imaginary correlation function, the analogous procedure is

given time interval were accumulated on the fly by storingdone using the variations in the real part.
the  product of accumulated  arrays A[K][(t/ The simulation results for the two-point, two-time corre-
At)(modM) IXA*[K]([(t—s)/At](modM)) inan array for  |ation functions were checked against generalized Enskog
the correlation functiodA(s)Ay) for all relevant values of  theory result§27]. The statistical uncertainty in the normal-
s. At the end of the run the result was divided by the numbelized correlation functionias obtained by the procedure
of points accumulated. Multiple-point and multiple-time cor- above are quite smal(of the order of 0.00L The numerical
relation functions are evaluated in an analogous fashion. yajue for the shear viscosity, extracted from the exponential
Good statistics are difficult to obtain for the higher-order gecay of the autocorrelation function of the transverse veloc-
correlation functions since the functions are the average of fy T,, was compared to the kinetic theory prediction for this
prOdUCt of mu|tlp|e factors of the linear denSItlﬂi For quantr[y[z:]_] and excellent agreement was observed.
example, the three-point correlation functions are con-' The time-convolution integrals in the mode-coupling ex-
structed by averages of quantities that are typically of theyressions for the higher-order correlation functions were
order ofN°, whereas the final average itself is@{N). In  evaluated by numerically integrating data for the two-point,
order to optimize the sampling, many relatively short runs ofyyo-time correlation function&2°(t) obtained directly from
durationR=4MAt_were performed and averaged on the fly. iha simulation. Since the error bars of tﬁéb(t) are very
The strategy of using many short runs seems to be better thafy, 5| the level of uncertainty in the theoretical prediction
the alternative of performllng a single long run of equal totalt - 110 higher-order correlation functions is negligible in
length perhaps because it reduces the effect of abnormallyynnarison to the uncertainty in the simulation data for the
large points that contaminate the signal for a long time.  nigher order correlation function. Furthermore, no significant
Furth_er Improvement of _the stat|st|c§_of the.caICUIateddifferences were noted in the convolution integrals calcu-
correlation funct|(_)ns IS possible by e_xplomng the 'SOtrOpy_Oflated using the simulation data and calculated from high
the system. To simplify the comparison between theoreticg, ity functional fits of the integrands. In principle, one
predictions and the simulation results, all wave vectors were, 14" also use the hydrodynamic forms for all two-point,
taken to be co-linear along theaxis so thak-q=kg, where 5 time correlation functions in combination with an accu-
k=[k| and g=|q|. Since the wave vectork and q a6 equation of state and kinetic theory results for the trans-
are parallel, the quantities (A q(t)Aq(t)Axs),  port coefficients, but since the simple correlation functions
(AkAy,qg,(t)Aqg,(t)A’k‘&), and <Ak"z,qAZ(t)Aq‘z(t)A:Y2>, can be were obtained with great accuracy in the simulation, the ac-
computed from the simulation in a periodic, cubic simulationtual data was used.
box and averaged to obtain improved statistics. In addition, As described in the Appendix, the dissipative part of the
for many of the correlation functions considered here, suclyertices forM ™7, M™™T andM™"" have free parameters
as(Ty_4(t)Ng(t) T ), the number of points used to calculate |, v,,, andvy,, which must be fitted to the data if the
the higher-order correlation functions can be effectivelydissipative contributions are to be included in the predictions
doubled by averaging over the transverse directipasdz.  for both the multiple-point and multiple-time correlation
The estimation of statistical uncertainty in the simulationfunctions. In practice, this is accomplished by selecting par-
data is problematic as it involves constructing an autocorreticular wave-vector magnituddgs and g and fitting the pa-
lation function for each point measured in the time-rameters according to the simulation results. This procedure
correlation functior{28]. Such a procedure is both memory is illustrated in Fig. 1 for the multiple-point correlation func-
and computationally intensive, and slows down the simulation
tion dramatically. In fact, most of the computational time of
the simulation is spent accumulating data and calculating the CTHET() =(Tyq(OLg(D T /(N)mkgT
correlation functions rather than performing the molecular
dynamics. We therefore adopt a simpler approach to estimafer wave vectork=Kk, andq=2k,. Note that although the
the error using the symmetry properties of the correlatiordissipative contribution to the overall correlation function in
functions. From reflection symmetry, it follows that all cor- Eq. (20) depends on the two parameters(n coupling and
relation functions are either real or imagingfy]. For areal v, (h coupling, these parameters can be uniquely deter-
correlation function, the imaginary part vanishes and hencenined since the asymptotic time behavior is determined en-
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FIG. 1. The fiting procedure for the three-point correlation _FIG. 2. The correlation function€™"™(t) (left panel$ and
function CTHT(t) for the wave vectorsk=k,, q=2k,, where ~C'-T(t) (right panel$ as a function of reduced time at various
koa=0.398 867. The unconnected circles are the simulation result§yave vectors. In the top row, the wave-vector argumentskare
the solid line denotes the full mode-coupling results, the dotted line=Ko,d= 2K, [open unconnected circles, simulation results; solid
denotes the mode-coupling results with Euler vertices, and the londine, mode-coupling theoryMCT) prediction] and k=2k,,q=k,
dashed and dot-dashed lines represent the contributions from tHepen unconnected squares, simulation results; dotted line, MCT
n-dissipative andh-dissipative vertices, respectively. For clarity, the prediction. In the middle row, the wave-vector arguments &re
statistical uncertainties in all quantities have been omitted. =Ko, g=3Ko (open unconnected circles, simulation results; solid

line, MCT prediction and k=3ky,g=k, (open unconnected

tirely by the n-coupling contribution. Once this parameter is Sauares, simulation results; dotted line, MCT predidtidn the
set (here,v,=—0.18), v, can be determined by fitting the bottom row, the wave-vector arguments &re2k,,q= 3k, (open

: - _ L unconnected circles, simulation results; solid line, MCT predigtion
height of the first peakfound to bev,=0.90. A similar andk=3kg,q=2k, (open unconnected squares, simulation results;

i o TT:H i ioh i ) = . > =
procedure is used for thd vertex in Eq.(17), which s qotted line, MCT prediction For clarity, the statistical uncertainties
relevant for the correlation function in all quantities have been omitted.

CTTN() = (T (D To(ON_)/S(K), tion roughly corresponds to Kawasaki’s original formulation
of mode-coupling theor}18], which is based upon a nonlin-

and it is found thav,,= —0.62. Note that it is, in fact, the ear Langevin equation with Gaussian noige fluctuating
additional couplings, which arise at dissipative order, thaforce9. Such a Gaussian theory for the multiple-point corre-
account for the slow decay of the three-point correlationlation functions differs from the present formulation in two
function in Fig. 1. It is therefore quite apparent that orderingsignificant ways: First, since the subtractions in the multilin-
of terms using the wave vector must be done carefully for theear basis sdisee Eq.(3)] involve static three-point correla-
system under consideration, since contributions that appedion functions of the linear densities, which vanish under the
at higher orders of the wave vector can actually dominat@ssumption of Gaussian statistics, the Gaussian theory ne-

lower-order terms. glects terms of the form
With the coupling parameters fixed by the fitting proce-
dure, one can then compare the simulation results with the (Ak(t)A_k>_K1—11.<A_kAk_qu>'

theoretical predictions for arbitrary wave-vector combina-

tions. In Fig. 2, the simulation and theqret|caTILpTred|ct|ons "N yhich appear, for instance, in the mode-coupling expression
the multiple-point correlation functionsC'~'(t) and

TT;N i i i
CT™N(t) are shown as functions of time for a number of for C' "(t). These terms make an important contribution to

¢ binati Th Kabl tb the multiple-point correlations functions on all time scales,
wave-veclor combinations. The reémarkable agreement bey, g particularly for short times. Second, since the subtraction
tween the simulation results and the theoretical pred|ct|on§erms vanish in the Gaussian theory, the coupling vertices are

OT both three-point correlatlon_ fur_u:tlon.s over all ime re- significantly affected. For example, looking at the Euler or-
gimes and wave-vector combinations is a clear indication

that the formulation of the mode-coupling theory is sound. der contributions to the verteMTIjE, the vertex in the
It is interesting to see how the theoretical predictions ofCaUssian approximation becomés™" according to

the present formalism compare to those obtained from a . .

mode-coupling theory in which Gaussian statistical behavioM ™"N=(QT, \N_)/S(k)=((T\ -, To)N_,)/S(k)=VT"N,

is assumed in the multilinear basis set. This type of assump- (26)
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TABLE I. Expressions for the leading behavior of thiler leEa) - iy
“a 0.4 T T g N T T
verticesM?! and their Gaussian counterpaxté®.
01 | &
TL;T TT,L 0,075
Mﬁl,qu:k kgt i 2kplp 0.05
Vﬁl*q,q;k ik[Tl _ik[rl 0.025
1 0
Similar differences between the verticgsin the Gaussian  -o4 ‘ ‘ ~0.025

— [} 10 20 30 40 50 0 1‘0 20 3l0 4‘0 50
approximation and th&! vertices appear in the dissipative
parts of theM ™ T andM TH'T (see Tables | and )

In order to assess how each of these differences affects Fig. 3. The full mode-coupling theoMCT), Gaussian MCT,
three-pglnt Corre.|at|0r1TIF'1\lnCt|0n3y WTeL_gnce again consider theyler-order MCT predictions, and simulation data for the correla-
correlation function€" (t) andC'~'(t). The first corre-  tion functionsCT"N(t) (left pane) and CT-T(t) (right pane) at
lation function differs not only in the explicit form of the wave vectorsk=k, andq=3k,. In both panels, the unconnected
coupling vertices but also in the form of the expressions dueircles are the simulation data, the solid, dotted, and dashed lines
to the subtraction terms in the basis set. The second correleepresent the full MCT, the Euler-order MCT, and the Gaussian
tion function, on the other hand, vanishesatd by symme-  MCT results, respectively. The error estimates represent 96% con-
try and does not contain contributions that are directly profidence intervals. Note that the Gaussian MCT theory is qualita-
portional to two-point, two-time correlation functiofisee tively incorrect on all time scales fa'"N(t).

Eq. (18)]. For this correlation function, the differences be- - o o _
tween the Gaussian and full mode-coupling theory arisgince the equilibrium distribution function is stationary. In-
solely due to differences between the Gaussian vertice¥erting all time arguments and using the properties of the
VTNT VTHT and their full counterparts. In Fig. 3, the Gauss- densities under time reversal, one obtains
ian and full mode-coupling expressions are compared to the a a
simulation data for the wave vectoks=k,, q=3ky. From (Tk=q(tDAGT k(= t1)) = Ya( Tk—q( —t2) AGT_k(t1)),
these plots, it is clear that the Gaussian theory poorly pre- _ _ _
dicts the time dependence 6f "N(t) on all time scales and whe_re YI?_ 1 f;_)rda;lN, H and y,=—1 for T.L. Whenk
also gives worse results for the correlation function ~ 9= ~ K. we find that
CTHT(t). Similar behavior can be seen for other wave-vector

N T _((ty+ o) Lop(t) T )= —(T_(ty+to) Lo (to) T ),
combinations. (Tt + ) La(t) T = —(T - (tr + o) La(t2) Ty

Turning now to the multiple-time correlation functions, \hich implies that this correlation function is antisymmetric
the simulation results and theoretical TerTedlctlons for theynder interchange df, with t, (and therefore vanishes when
mglltlTple-tlme correlation  functions G'~'(t;,t;) and t1=t,), while (T_,(t;+t5) Lo (t1) T_y) is symmetric under
G " (ty1,t) for several different wave vectors are plotted in i, exchange of, andt,. It is reassuring, though not sur-

Fig. 4 as a function of time for the time combinations pising, that the mode-coupling theory respects these time-
(t1,t2) of (b, (t,3t), and (3,t). The excellent agreement reyersal properties.

between the full mode-coupling theory and simulation results  one may also calculate the multiple-time correlation

strongly suggests that the assumptions discussed at lengthdictions via Eqs(24) and(25) using the simulation data for
Ref.[15], of what determines whether a correlation function,q multiple-point functionsG™T and G™-T. However

decays quickly or not, are appropriate. These assumptiongnce the mode-coupling results for these functions are al-
are necessary to obtain mode-coupling equations that are lgaady in excellent agreement with the simulation data, the

cal in time. . _ . improvement obtained using the simulation results for the
Note that the time symmetry properties are evident in thes21 i generally statistically negligible. Furthermore, the
two graphs in the first row of Fig. 4, which correspond to thegimylations to calculate the multiple-point functions are

wave vectorsk=Kko, q=2ko. For these wave vectors, the compuytationally intensive compared to calculations of the

Time (dimensionless)

time symmetries can be obtained by noting that two-point functions. It is therefore far easier to generate pre-
a a dictions with small statistical uncertainties using the mode-
(Tk-q(t1Ft2) AG(t) T 1) = (T (1) AgT -k — 1)), coupling theory expressions for the multiple-point functions.

TABLE II. Expressions for leading behavior of thiissipativeverticesM?! and their Gaussian counterpax&’. Note that in the table
k andq stand for thex component ok andq, respectively.

THiT TNT TTH
M g (k=) [vn— 3 7/mp] (k=)o k2S(a) n/mp [0 g+ (AMV2(BB) (M)
Vi gk —k(k=q)vn—kqn/mp —k(k—=q)v, K2y,

011107-8
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o ‘ c‘"’a,,tz)‘ ‘ for multiple-time correlations are qualitatively incorrect on
' all time scales, and particularly so for correlation functions
005 'f”\m?w%”%%_ ] that do not vanish whety=t,=0. Furthermore, as might be
° ‘W expected from the discussion above of the dissipative contri-
005 %7 - ] bution to the three-point correlation functions, the inclusion

of the additional couplings arising at dissipative order is es-
sential if quantitatively accurate predictions for the multiple-
time correlation functions is desired.

In principle, in the limit of very small wave vectors, one
might expect that the additional couplings in the higher-order
‘ correlation arising from the dissipative part of the vertices
04 — G ' become less important and may be neglected. In fact, this is
not always the case since the overall order in the wave vector
of the various terms in the expressions &' is determined

by a wave-vector dependent prefactiire vertex multiplied
‘ _0:’ , : by the time convolution of two-point, two-time correlation
76 10 125 0 5 10 B0 functions. The time convolution of functions such@S\‘(t),
Time (dimensionless) which vanish ask—0, can give additional factors of the
FIG. 4. The multiple-time correlation functio®"(t, ,t,) and wave vector. Thus, fo.r instance, the contributi_on. from the
G™7(t,,t,) as a function of reduced time for various Wave-vectorfIrSt term in Eq.(19) (with a .Vertex of Euler orqens in fact
gthe same order of magnitude as the contribution from the

combinations. In all panels, the unconnected dots, crosses, and t hich i | . f dissipati der i
angles correspond to the simulation results for the time argumen st two terms, which Involve vertices of dissipative order in

t,=t,t,=t, t;=3t,t,=t, andt;=t,t,=3t, respectively. The solid, e hydrodynamic limit. _ _ _ _
dashed, and dotted lines correspond to the respective mode- 10 Obtain smaller wave vectors in a simulation to numeri-
coupling predictions. The results in the top, middle, and bottomCally check these considerations for dense systems in which

03 | /)
02}
P = 0.1

rows are for the wave-vector argumerks-ko,q=2ko, k=Ko, the mode-coupling effects are important, one would need to
q=23k,, andk=2k,,q=k,. For clarity, the statistical uncertainties Simulate larger systems with more particles. There are two
in all quantities have been omitted. difficulties with the simulation method applied to larger sys-

tems that make it difficult to obtain good statistics for the
Since the mode-coupling formalism relates the multiple-higher-order correlation functions. First, since the use of
time correlation functions to multiple-point correlation func- cells is memory intensive and the optimal number of cells
tions, the deficiencies in the Gaussian theory for the threescales as the cube of the length of the system, one must
point functions are carried over to the predictions for three-utilize a cell structure for the simulations, which is not opti-
time functions. This point is confirmed by the difference in mal, leading to a reduction in simulation efficiency. Second,
the behavior of the Gaussian versus full mode-couplinghe quality of the statistics for the higher-order correlation
theory results for the multiple-time correlation functions functions decreases essentially as the square of the number
shown in Fig. 5. Once again, the Gaussian theory predictionsf particles. It is therefore computationally challenging to
obtain accurate simulation results for the higher-order corre-

6™y oos i) lation functions for larger systems.

002 [F

V. SUMMARY AND CONCLUSIONS

0.00

002 [ In this paper, the predictions for higher-order correlation

functions based on the mode-coupling formalism developed
in Ref.[15] were evaluated in the hydrodynamic limit for a
hard-sphere system at moderate densities and compared to
simulation results. It was demonstrated that the mode-

-0.04

-0.06 -

-0.08

=01 . L -0.10

0 5 10 15 0 5 0 15 coupling theory yields excellent results for all higher-order
. o correlation functions provided that dissipative as well Euler-
Time  (dimensionless) order vertex coupling terms are included in the theory. The

FIG. 5. The full mode-coupling theoryMCT), Euler-order good agreement between the theoretical predictions and the
MCT, and Gaussian MCT predictions and simulation data for theSimulation results confirms that the assumptions underlying
multiple-time correlation function&s™(t, t,) (left pane) and  the mode-coupling theory, of how slow and fast decay of
G™-T(t;,t,) (right pane) at wave vectork=k, and q=3k, and arbitrary densities can be separated in a systematic fashion,
time argumentst,=3t,t,=t. In both panels, the unconnected are quite reasonable. _ ' . .
circles are the simulation data, the solid, dotted, and dashed lines In contrast to some mode-coupling theories of simple lig-
represent the full MCT theory, the Euler MCT, and the Gaussiarlids [18,19], the present mode-coupling theory includes all
MCT results, respectively. The error estimates represent 96% cormultilinear densities in the set of slow variables, does not
fidence intervals. neglect corrections to the “factorization” approximation, and
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does not assume Gaussian statistical properties of the ran- ACKNOWLEDGMENT
dom noise or fluctuating force. As the formalism allows ex-
act expressions to be obtained for all correlation functions ihSc
the thermodynamic limit, it provides a systematic way to
examine the various assumptions that must be made in order
to predict the time dependence of simple and higher-order

correlation functions, or to form comparisons with other |, this appendix, all vertices used to formulate numerical
theories. Along these lines, it was demonstrated that thgredictions for higher-order correlation functions are given
‘non-Gaussian” behavior of the random noise is importantfor the sake of completeness. To leading order in the wave
for the proper description of the multiple point correlation yectors, all vertices are either of Euler orderderk) or of
functions on all time scales. In particular, the Gaussianyjssipative order(order k?). Since the second term in the
theory for three-point functions leads to oversimplified cou-expression for the vertices in E€P) involves two time de-
pling vertices that have significant quantitative consequencegyatives of hydrodynamic densities, it is at least of quadratic
and more importantly, neglects important couplings to lineaiprder in the wave vectors. Therefore the Euler order of any
densities. Since the mode-coupling theory expresses thgsrtex is given by the static correlation functiiirst term
multiple-time correlation functions in terms of two-time, of Eq. (9). This static correlation function is imaginary and
higher-order correlation functions, the Gaussian theory hagn odd function of the wave vector. The leading order of a
similar deficiencies in describing the three-time correlationyertex of quadratic order in the wave vector is therefore
function of linear densities. given by the second term in E@9). For the hard-sphere
The calculation of higher-order correlation functions of system, all static correlation functions in the zero wave-
extensive linear densities in the hydrodynamic regime at lowector limit can be evaluated exactly if the radial distribution
to intermediate densities is computationally intensive. Theynction at contact(a) = y is known. The calculation of the
poor statistics obtained from the simulation arises from avysertices at Euler order is facilitated by considering the iden-

eraging quantities of ordeM” to obtain a signal of ordeX. ity valid in the canonical and grand-canonical ensembles,
However, since densities of tagged particles do not scale

with the number of particles, higher-order correlation func-

tions of tagged particle densities should not suffer from this

problem. The extension of the mode-coupling theory of = ) L _

higher-order correlation functions to nonextensive densitie/Nich links the time derivative to a Poisson bracket of the

of tagged particles is straightforward, and will be presentedlensities. It follows fromA={A,} and from the form of

in a future publication. the distribution function,
It is obviously desirable to apply the mode-coupling for-

malism to dense and supercooled liquids where correlation BHAT

functions exhibit more complicated time behavior. In dense J {AH}Be dF—f

systems, there is compelling eviden@¥], which suggests

that the_ eigenmode spectrum of the ITiouviIIe operator forwhich, by partial integration, yields

simple liquids changes, and a generalized “heat” mode be-

This work was supported by a grant from the Natural
iences and Engineering Research Council of Canada.

APPENDIX: EVALUATION OF THE VERTICES

(AB)=pB"Y({A,B}), (A1)

AL TH O ]
305 apCaq)S Al

comes long lived even at fairly large wave vectors. At large

. - a oA\ o [dA -
wave vectors, this mode roughly corresponds to a self- B lj —IB=—|=—|—B|le #Hgr
diffusion mode[29] that is slow in dense liquids due to par- dp\ 49/ dq\dp

ticle caging effects. Within the mode-coupling formalism,

the emergence of this short-wavelength collective mode im- :,8*1f {A,Ble AHdr.

plies that the cutoff wave vectds, for the heat mode be-

comes of the order of inverse molecular length scales. Under ) . ) _
these circumstances, the mode-coupling correction terms to 10 évaluate the higher-order correlation functions in the
the expressions for the higher-order correlation functions aréext, the vertice "= andM ™" are needed. The latter is
not expected to be small and must be considered. Approprthe simplest, aQ]"=T,_,L, SO

ately defined higher-order correlation functions may be quite

. . . e i —r o
useful in examining the microscopic origins of complex re MkEJq;k_:B YT gl TEDHTTE)
laxation behavior and dynamical heterogeneities. To this end,

one may examine the higher-order correlation functions at =ikB N T_qTh_o/(TkTE)=ikB ™1,

much larger wave vectors using a mode-coupling theory in

which the modes forming the basis set for the long-timeyhere we have use@iAB,C}=A{B,C}+{A,C}B and the

behavior are associated with physical processes on thegg. that{T,, T;}=0 and{L,, TE}=ikT:_,.

length scales. In fact, the structure of the mode-coupling Itis stra?ghtforward to sgow tha(DET;'qu T,— 2mE,
-a'q '

theory suggests that measures of dynamical heterogenei% using the above result fék, T}, we obtain

based on multiple-point correlation functiofs0] are quite
closely related to measures based on multiple-time correla- —
A ! . . MTT,L :_ikﬂ—l_g {E L*}>
tion functions[11]. These issues are currently being pursued. k—q,0:k ENL SIS
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The energy can be split into a kinetic and a potential partwhere
The kinetic contribution toM "'t is easily calculated, and
MTTL can be expressed as f (Je—q(OHD] L)

m(N)kBT '

WI:;q;kzi%kﬁil_ SUERLE D).

The second term on the right-hand side of the equation above = (Te_g(D)IG(D] L)

can be evaluated by noting that Vh= m(NYkgT dt. (A3)
{EPO LE =1 [eik'rmi—l])?-&,jV(rmj) Similar expressions can be obtained for the parametgrs
j#m

and vy, appearing in theM™T and MTTH vertices (see
Table Il). To obtain the leading behavior for small wave vec-
=—3 z i(K-rmjX-d; V(rml)+0(k2) tors, the wave vectors in the integrals can be set to zero, and
j#m the projected dynamics Liouvillian in the exponent in Eq.
(10) can be replaced by the full Liouvillian. Then, the Green-
Kubo expression for the viscosity can be recognized in the
last term of Eq.(A2),

wherer ,;=ry,—r;, which implies

(B LED) =~ $ik(Nyp | (%% Lovengtnar,
B iTeeyi T
whereg(r) is the radial distribution function. Performing the = VL (11 (1) Hdt, (A4)
angular integration and writing(r)=h(r)e #V("), so that a

partial integration can be performed, leads to For the viscosityy and the heat conduction (which figures

p< ) in the expression foM "), we take the Enskog expres-
(9 (r3n(7))dr=—ikbpNy, sions[21],

({ER LK =—ik

whereb=27a®%3 andy is the radial distribution function at _ ( 1 4 )
. . . =nobp| —+ =+0.761bpy |,
contact. y can be estimated using the Carnahan-Starling 7= 05P\ |y 5 PX
equation of statg20] and the expression for the presspref

a hard-sphere system,
)\ = )\0bp

6 1
=+ —+0.7574)p)().
Bp _ L+t > bex
T T (1=
p (1=7) where the Boltzmann value of the shear viscosity and
where7 is the packing fraction given by= mpa3/6. thermal diffusivity\, are given by
Combining all terms, one obtains

=1+bpy,

5 m 1/2
M T =i 2kplp. 70~ 16a2 3_77) ’
Turning now to the calculation of the dissipative part of 75 m \ 2
vertices, their specific wave-vector dependence is determined )\OZW kg (B_)
w

as follows: The derivative of a conserved density can be

written as ) ) ) )
For the particular parameters of the simulation, it was

Al~ijk.J2 checked by studying the decay of simple correlation func-
k ' : .
tions that the Enskog expressions are accurate.

where J2 is the current associated with the hydrodynamic In principle, integrals of time correlation functions of
variablea. What is needed in Eq10) is thedissipativecur- ~ Products of two currents and a density, as in the expression
rentji=(1—"P)JZ. Looking first at the verte ™', using for vy anduy, in Eq. (A3), can be written in the hydrody-
namic limit in terms of transport coefficients and derivatives
of transport coefficients with respect to thermodynamic

<Tk—quT—k> \/Z o . . .
QMgq=TkeaHq— WTFquHﬁ 5Tk, quantities like the temperature and chemical potential. Dissi-
pative contributions such as these have already been evalu-
the vertex can be expressed as ated by Lim[30] in the zero wave-vector limit in the context
of generalized hydrodynamics. In fact, the expression/fpr
Wﬁgq;kz —ky(ky— Oy) v — KOy, can be related to the viscosifg0] as
(D] 7k> 2\ 12
2 T el R
—k ‘/_f “m(NykgT 9" (A2) Uh_(3> mp’

011107-11



RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW EB5 011107

whereay |, can be expressed in terms of the viscosity and theo temperature and energy of the approximate kinetic theory
derivatives of viscosity with respect to the temperature andgxpressions for the transport coefficients correspond to their
chemical potential. Using the form far),, M-lk—t'iqTq'k can be actual valuesy,, v, anduv,, are taken as free parameters
written as . that will be fitted from simulation data.

/ The expressions for the vertices that are needed in the text
2) 1/2 7

. are listed in Tables | and II. Also tabulated are the vertices
Mlﬂd-,rq;k: —ky(Kx—0) 2

3 (AS) " one would obtain from a Gaussian theory in which static
three-point correlation functions are set to zero. These
Since it is not known how well the derivatives with respectGaussian vertices are denoted \by, .

mp
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